
Assessing the
Vulnerabilities of the
Open-Source Artificial
Intelligence (AI)
Landscape: A Large-
Scale Analysis of the
Hugging Face Platform
Data Science and Artificial Intelligence
Lab at the Kelley School of Business

This Photo by Unknown author is licensed under CC BY.

Adhishree Kathikar, Aishwarya Nair, Ben
Lazarine, Agrim Sachdeva, Sagar Samtani,
Hyrum Anderson (Robust Intelligence)

https://scherlund.blogspot.com/2019/01/call-to-reimagine-artificial.html
https://creativecommons.org/licenses/by/3.0/

What is the importance of Open-Source AI?

While Hugging Face democratizes access to AI
models, these models may contain unknown
security vulnerabilities

C

Figure 1: Hugging Face model cards
Include:

(a) the basic details of each model
including the model name and the

model filters,
(b) the number of times the

repository has been downloaded
in a month,

(c) access model's files and versions,
(d) Hosted Inference API

Figure 2: Files
and Versions

Section of
Model

B

D

A

Why GitHub?
Hugging Face does not provide
source code on their website,
making it difficult for developers
and users to clone and edit
models

Hugging Face provides resources
through GitHub repositories for
developing models before posting
onto the Hugging Face platform

Because of GitHub’s popularity,
Hugging Face reaches a wider
audience, leading to more code
on Hugging Face’s platform

a
b

c

Figure 4: An Example of Hugging Face repository in GitHub
(a) The user’s name, research aspect & name,

(b) Details about this repository,
(c) The relative files that the user has made

GitHub and Hugging Face Linkages

• Aren’t proper linkages between
models on Hugging Face and their
underlying GitHub repositories

• Difficult to identify vulnerabilities in
the AI models and their code.

• Scale of models on Hugging Face
necessitates automated approaches
to detect vulnerabilities.

Vulnerability Linkages

• Vulnerabilities between Hugging Face
and GitHub could manifest themselves
through three types of linkages:

1. Hugging Face model cards or linkages
identified through model card analysis

2. GitHub readmes or linkages identified by
examining mentions of Hugging Face in
GitHub documentation readme files

3. Hugging Face API

Figure 5: Hugging Face model card referencing GitHub

Figure 7: GitHub source code calling Hugging Face API

Figure 6: GitHub readme referencing Hugging Face
datasets and models

• Scans model source code to
identify code-based
vulnerabilities

• Identifies vulnerabilities such
as secrets, insecurities,
attacks, and AI-specific
vulnerabilities

• e.g. Bandit, FlawFinder,
Semgrep

.

• Scans the compiled pre-
trained models themselves to
identify model vulnerabilities

• Due to their ability to scan the
models themselves, dynamic
scanners often provide a
richer vulnerability scan

• e.g. Counterfit

.

Static DynamicVS

Vulnerability Scanners Used

Flawfinder
Scans for: weak cryptography, file permission, insecure function, and insecure input

vulnerabilities
Specifically scans C/C++ code

However, Flawfinder does not scan for any AI-specific vulnerabilities.

Bandit
Scans for: some secrets, insecurities, and attacks in Python code
However, Bandit does not scan for any AI-specific vulnerabilities.

Semgrep
Scans for: secrets, insecurities, attacks, and AI-specific vulnerabilities

However, Semgrep cannot scan cross-functional files and application components.
Some Semgrep rulesets can be used to scan ML models (e.g. trailofbits).

Research Objectives & Questions
Our research objectives are to:

1. Collect a large scale of models from the Hugging Face platform

2. Identify linkages between Hugging Face models and their underlying
GitHub repositories

3. Perform an automated vulnerability assessment

Through our research we plan to answer the following questions:

What Hugging Face models have an underlying GitHub repository with the
model's source code?

How can static and/or dynamic vulnerability assessment scanners be
leveraged to identify vulnerabilities within the GitHub repositories linked to
Hugging Face models?

Proposed
Research
Framework

Figure 8: Proposed Research Framework

The aim of our
collection process
is to collect
pretrained models
on Hugging Face
for subsequent
vulnerability
assessment and
analysis.

Hugging Face Category Breakdown

• Hugging Face separates their
models based on tasks that
fall under 6 large categories

• The majority of models are
NLPs

• Understanding this
breakdown helps us
determine the various
vulnerabilities in each
category

Categories Description Tasks Associated
of

Models
Top 5 Datasets Used

Datasets

NLP
Category is focused on text
actions and understanding

context in sentences.

Translation, Fill-
Mask, Token
Classification

56,863

Glue, squad, common_voice,
Wikipedia, mozilla-

foundation/common_voice_11
_0

390

RL

This category is usually
utilized in the video games

where the AI model
continuously gets better at

the game the more it plays.

Reinforcement
Learning, Robotics

11,009 0 datasets were used here. 0

Audio
Category is focused on
audio and determining

voice activity.

Automatic Speech
Recognition, Audio

Classification,
7,357

Common_voice, Wikipedia,
mozilla-

foundation/common_voice_
21

Multimodal
Uses the above modes of
image classification, NLP,

and audio in unison.

Feature Extraction,
Text-to-Image

5,229
Glue, squad, Wikipedia,

imagenet-1k, bookcorpus
31

Computer
Vision

focused on images and
videos

determine depth and can
classify images into

different categories.

Image
Classification,

Image
Segmentation,

Image Classification

3,220
mozilla-

foundation/common_voice_7_
0, imagenet-1k,

11

Tabular
This category provides

provide statistical analysis
from tables.

Tabular Regression,
Tabular

Classification
167

Gustavosta/Stable-Diffusion-
Prompts

1

Table 1: Breakdown of Hugging Face model category

Linkage Analysis Results

Linkage
Total # of
Linkages

Total % of
Collection

Category
of Linkage

Per
Category

% of Linkage
Per Category

HF Model
Cards

9,562 9%

Multimodal 636 12%
NLP 5,629 10%

Audio 843 11%
Tabular 15 9%

RL 2,039 19%
CV 400 12%

GitHub
Readme files

5,192 18%

Searched and
Root

739 67%

Forked 4,453 16%

• Hugging Face model cards which
mentioned GitHub repositories: 9,562
• 9% of our collection of 110,000

models
• GitHub readmes that mentioned

Hugging Face models: 5,192
• 18% of our GitHub repository

collection had a linkage to
Hugging Face

• 67% of search and root
repositories link to Hugging Face

• 16% of forked repositories link to
Hugging Face

• Linkages of Hugging Face API are part
of our future steps

Table 2: Linkages between GitHub and Hugging Face

GitHub Repository Collection and
Vulnerability Assessment
• Our scan consists of 29,168 repositories identified across three categories :
• 111 root repositories

• Repositories posted by HuggingFace on GitHub
• Contain foundational and supplementary repositories, datasets, and toolkits

• Only foundational (5) and supplementary (40) repositories store source code
• 28,067 fork repositories

• Forked from root repositories
• 990 searched repositories

• Found with the Keyword search: "huggingface" via the GitHub API

• We categorize vulnerabilities based on vulnerability severities and Common Weakness
Enumerations (CWEs)

• Help determine how developers should prioritize identified vulnerabilities and
determine what kinds of vulnerabilities are found

Root: 6.79% low-severity; 57.23%
medium-severity; 35.98% high-
severity
Fork: 82.69% low-severity; 8.09%
medium-severity; 9.22% high-
severity
Searched: 82.89% low-severity;
9.62% medium-severity; 7.49%
high-severity

Root repositories have a smaller
percentage of vulnerabilities
classified as low-severity, while
both searched and fork have the
greatest percentages of low-
severity vulnerabilities

Low-severity vulnerabilities may
have developed and persisted in
the development of new
repositories

Type of Repos itory

Vulnerability Severity
Total

Vulnerabil itiesHigh Medium Low

Root 689 1,096 130 1,915

Forked 537,815 472,304 4,824,765 5,834,884

Searched 5,987 7,683 66,229 79,899

Totals 544,491 481,083 4,891,124 5,916,698

Table 3: Vulnerability Severities of GitHub Searched, Fork, and Root Repositories

Repository Type Vulnerability Occurrences Distinct
Reposito
ries

Vulnerability Definition Top Vulnerable
Repository

Vulnerability
Occurrences

Root
(Foundational & Supplem
ental)

CWE-502 734 10 Warning against using pickle
and recommends serializing to
avoid arbitrary code

transformers 516

CWE-676 208 10 PyTorch memory is
not automatically pinned to
restrict access from
uncertified personnel

transformers 174

CWE-319 126 2 Sensitive data (e.g., passwords) is
sent in plain text which is
easily accessed

transformers 126

Fork CWE-502 661,154 241,207 Warning against using pickle
and recommends serializing to
avoid arbitrary code

zhangxiangxiao/tokeni
zers

26

CWE-676 252,634 131,244 PyTorch memory is not
pinned automatically to
restrict access from
uncertified personnel

zh-plus/accelerate 14

CWE-532 36,024 21,954 Sensitive information
(e.g., passwords) used in
debugging code

wise-east/transfer-
learning-cov-ai

6

Searched CWE-703 53,786 9,156 The external function does
not account for/handle
exceptional conditions that may
occur

aws/sagemaker-
python-sdk

311

CWE-502 4,419 2,094 Warning against using pickle
and recommends serializing to
avoid arbitrary code

huggingface/tokenizer
s

26

CWE-259 3,083 2,291 Sensitive information
(e.g., passwords) embedded
into source code or files

D-Yifan/AgileLightning 17

Table 4: Main CWEs Identified for Different Repository Types

Top 3 Vulnerabilities
Detected Across All
Repositories Scanned:
CWE-502 = Count: 667,977
CWE-676 = Count: 254,604
CWE-703 = Count: 53,786

• CWE-502 detects the use of pickling
within the code

• pogggg

• Possible arbitrary code during
unpickling

• The forked repo with highest CWE-
502 vulnerabilities is forked from
tokenizers, which had the second
highest number of occurrences
(164) of CWE-502

• CWE-676 is identified if the code does
not automatically pin PyTorch memory
to secure the memory’s access from
uncertified users
• Can cause attackers to access

information within these
repositories

• Accelerate library can train
Transformers models
• Possible vulnerability

propagation

Based on our results, 502 and 676
were the top two CWEs identified
in root and forked repositories.

Repository Type Vulnerabil ity Occurrences Distinct
Repositories

Vulnerability Definition Top Vulnerable
Repository

Vulnerability
Occurrences

Root
(Foundational &
Supplemental)

CWE-502 734 10 Warning against using pickle
and recommends serializing to
avoid arbitrary code

transformers 516

CWE-676 208 10 PyTorch memory is
not automatically pinned to
restrict access from
uncertified personnel

transformers 174

CWE-319 126 2 Sensitive data (e.g., passwords) is
sent in plain text which is
easily accessed

transformers 126

Fork CWE-502 661,154 241,207 Warning against using pickle
and recommends serializing to
avoid arbitrary code

zhangxiangxiao/toke
nizers

26

CWE-676 252,634 131,244 PyTorch memory is not
pinned automatically to
restrict access from
uncertified personnel

zh-plus/accelerate 14

CWE-532 36,024 21,954 Sensitive information
(e.g., passwords) used in
debugging code

wise-east/transfer-
learning-cov-ai

6

Searched CWE-703 53,786 9,156 The external function does
not account for/handle
exceptional conditions that may
occur

aws/sagemaker-
python-sdk

311

CWE-502 4,419 2,094 Warning against using pickle
and recommends serializing to
avoid arbitrary code

huggingface/tokeniz
ers

26

CWE-259 3,083 2,291 Sensitive information
(e.g., passwords) embedded
into source code or fi les

D-
Yifan/AgileLightning

17

Table 4: Main CWEs Identified for Different Repository Types

• We can determine that this CWE
was developed by individual
repositories and not inherited from
root repositories

• CWE-703 is identified if the code
does not handle exceptional
conditions

CWE-703 is only found in searched
repositories.

Repository Type Vulnerabil ity Occurrences Distinct
Repositories

Vulnerability Definition Top Vulnerable
Repository

Vulnerability
Occurrences

Root
(Foundational &
Supplemental)

CWE-502 734 10 Warning against using pickle
and recommends serializing to
avoid arbitrary code

transformers 516

CWE-676 208 10 PyTorch memory is
not automatically pinned to
restrict access from
uncertified personnel

transformers 174

CWE-319 126 2 Sensitive data (e.g., passwords) is
sent in plain text which is
easily accessed

transformers 126

Fork CWE-502 661,154 241,207 Warning against using pickle
and recommends serializing to
avoid arbitrary code

zhangxiangxiao/toke
nizers

26

CWE-676 252,634 131,244 PyTorch memory is not
pinned automatically to
restrict access from
uncertified personnel

zh-plus/accelerate 14

CWE-532 36,024 21,954 Sensitive information
(e.g., passwords) used in
debugging code

wise-east/transfer-
learning-cov-ai

6

Searched CWE-703 53,786 9,156 The external function does
not account for/handle
exceptional conditions that may
occur

aws/sagemaker-
python-sdk

311

CWE-502 4,419 2,094 Warning against using pickle
and recommends serializing to
avoid arbitrary code

huggingface/tokeniz
ers

26

CWE-259 3,083 2,291 Sensitive information
(e.g., passwords) embedded
into source code or fi les

D-
Yifan/AgileLightning

17

Table 4: Main CWEs Identified for Different Repository Types

Main Takeaways

• Collected 110,000 Hugging Face models and parsed the associated model cards to
understand the main categories of models on Hugging Face

• Identified linkages between GitHub repositories and Hugging Face models

• Scanned linked GitHub repositories for vulnerabilities

• Discovered that while a majority of the vulnerabilities detected in the root
repositories were high-severity, the majority of vulnerabilities in the forked and
searched repositories were low-severity

• Identified the common vulnerability types (CWE-502, CWE-676, CWE-703)

Future Directions

• Incrementally collect models on the Hugging Face platform to get a
deeper understanding of the overall Hugging Face landscape

• Further breakdown categories of linkages between GitHub and
Hugging Face (Hugging Face API model calls, GitHub repositories for
training Hugging Face models, etc.)

• Start case study and analyze how the connections between Hugging
Face models and GitHub repositories can propagate AI vulnerabilities
through both platforms.

• Integrating our open-source vulnerability assessment capabilities with
MITRE's AI Risk Database

Questions?

Adhishree Kathikar

akathika@iu.edu

Aishwarya Nair

aishnair@iu.edu

Sagar Samtani

ssamtani@iu.edu

	Slide 1: Assessing the Vulnerabilities of the Open-Source Artificial Intelligence (AI) Landscape: A Large-Scale Analysis of the Hugging Face Platform
	Slide 2: What is the importance of Open-Source AI?
	Slide 3: While Hugging Face democratizes access to AI models, these models may contain unknown security vulnerabilities
	Slide 4
	Slide 5
	Slide 6: Why GitHub?
	Slide 7: GitHub and Hugging Face Linkages
	Slide 8: Vulnerability Linkages
	Slide 9
	Slide 10
	Slide 11: Research Objectives & Questions
	Slide 12: Proposed Research Framework
	Slide 13: The aim of our collection process is to collect pretrained models on Hugging Face for subsequent vulnerability assessment and analysis.
	Slide 14
	Slide 15: Linkage Analysis Results
	Slide 16: GitHub Repository Collection and Vulnerability Assessment
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Main Takeaways
	Slide 22
	Slide 23: Future Directions
	Slide 24: Questions?

